Homework Assignment #9

Non-invasive Imaging Techniques: Magnetic Resonance Imaging
(Hendee 23, 24)

Due December 4th

1. (5 points) Determine the fraction of spins aligned with an external magnetic field at body temperature (310 K), for a 2.0 T magnetic field for the case when
 a. The spins are electrons
 b. The spins are Phosphorous-31 nuclei

2. (5 points) The magnetic field at a distance of 0.15 nm from a proton is 4×10^{-4} T. What change in Larmor frequency does this ΔB cause? How long will it take for a phase difference of π radians to occur between a precessing spin feeling this extra field, and one that is not?

3. (5 points) Dephasing of the transverse magnetization during MRI can occur either because of spin-spin relaxation, specified by the so-called “non-recoverable” T_2 relaxation time, or because of imperfections in the magnetic field. If the magnetic field variation is ΔB_{ext} then the measured transverse relaxation time T_2^*, will depend on both of these factors:

 \[\frac{1}{T_2^*} = \frac{1}{T_2} + \frac{\gamma \Delta B_{\text{ext}}}{2}. \]

 a. What is the effective relaxation time associated with the magnetic field variation for a proton in a magnetic field of 1.5 T with a uniformity of 1 part per million?
 b. The non-recoverable relaxation time of brain is about 2.5 ms. What dominates the measured transverse relaxation time in brain?

4. (10 points) This problem is a walk-through estimation of the energy absorption in a patient undergoing MRI. From this, you can get an idea of the "thermal dose" to the patient, which you can also measure in J/kg. You may want to refer back to a general physics textbook on electricity and magnetism for some of this.

 Treat the body as a uniform cylindrical conductor of Radius R with electrical conductivity σ. Assume the magnetic field passing through the cylinder (through the end-caps, along the axis of the cylinder) is $B(t) = B_0 \cos(\omega_0 t)$.

 a. Calculate the magnetic flux passing through a circular surface of radius r ($0 < r < R$)
 b. Using Faraday's law of induction, determine the electric field at $E(r)$.
 c. Use Ohm's law in the form $j = \sigma E$ (j is the electric current / area) to show that the average power dissipated per unit volume of the material is:

 \[p = \frac{\sigma E_0^2}{2} = \frac{\sigma R^2 \omega_0^2 B_0^2}{8}. \]

 d. If the radio-frequency signal is on for a period of time Δt during a cycle period of T_R, revise your answer to part c to include the duty cycle of the pulse.
e. If the mass density of the material is ρ, calculate the specific absorption rate (SAR) which is defined as the power dissipated per unit mass.

f. For an RF pulse that causes a spin rotation through an angle of θ when the axial magnetic field strength is B_0, modify your answer in e to express the SAR in terms of Δt, T_R, B_0, θ, R, ρ, and σ.

g. Use typical values for the human body $R=0.17$ m, $\sigma = 0.3$ S/m to evaluate this expression for a $\pi/2$ pulse.

h. For $B_0 = 1.5$ T and $\text{SAR} < 0.4$ W/kg, determine the minimum value of Δt for $T_R = 1s$.

i. Find B_1 for the conditions in h.

j. For a 180 degree pulse, determine the thermal dose in J/kg.

5. (5 points) A certain MRI machine has a static magnetic field strength of 2 T. Spins are excited by applying a field gradient of 3 mT/m. If the slice is to be 5 mm thick, what is the Larmor frequency and the spread in frequencies required?